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Structured diffuse-scattering intensities, whether of composi-

tional or of pure displacive origin, static or dynamic, contain

important information about the symmetry of the individual

compositional and/or displacive modes responsible for the

observed intensities. However, the interpretation of the

experimental data is very often impeded by the lack of a

symmetry-based approach to the analysis of the structured

diffuse-scattering distributions. Recently, we have demon-

strated the existence of systematic phonon selection rules for

diffuse scattering that depend on the symmetries of the mode

and the scattering vector, and not on the specific structure.

Here, we show that such symmetry analysis can be successfully

extended and also applied to structure-dependent diffuse

scattering associated with ‘disordered’ materials: the combi-

nation of theoretically determined, diffuse-scattering extinc-

tion conditions with the concept of non-characteristic orbits

proves to be very useful in the interpretation of the observed

diffuse-scattering extinctions. The utility of this approach is

illustrated by the analysis of diffuse-scattering data from

ThAsSe, FeOF and FeF2. The essential part of the associated

calculations are performed by the computer programs

NEUTRON (systematic phonon extinction rules in inelastic

scattering) and NONCHAR (non-characteristic orbits of

space groups) that are available on the Bilbao crystallographic

server (http://www.cryst.ehu.es).
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1. Introduction

There is currently no systematic group-theory-based approach

to the interpretation of the structured diffuse scattering (DS)

characteristic of the reciprocal spaces of many ‘disordered’

materials. In particular, there is no systematic symmetry-based

approach to the interpretation of real, or pseudo (apparent),

‘extinction conditions’ in experimentally observed structured

diffuse intensity distributions (Brink et al., 2000, 2001; Withers

et al., 2004, 2006; Liu et al., 2005; Withers, 2005). Fig. 1, for

example, shows (a) close to ½001�, (b) h01�44i and (c) h110i zone-

axis electron-diffraction patterns (EDP’s) of the P42=mnm

rutile type, ‘disordered’ transition metal oxyfluoride, FeOF

(Brink et al., 2000). The structured diffuse scattering char-

acteristic of this particular ‘disordered’ material takes the

form of rods of diffuse intensity running through the

H� �h110i� positions of reciprocal space. Here, H ¼ ðh; k; lÞ

is a parent or average structure Bragg reflection (i.e. H is a

vector of the reciprocal lattice L�, H 2 L�), and � represents a

continuous variable, see also Brink et al. (2000). Given the

P42=mnm average structure space-group symmetry, why,

however, does this diffuse streaking appear to only run

through the hþ kþ l odd, but not the hþ kþ l even, parent



reflections (see Figs. 1a and b)? Likewise, why is there no

diffuse streaking of H� �h1�110i� type apparent in Fig. 1(c)?

The purpose of the current contribution is to use a group-

theoretical approach to explain in formal symmetry terms why

such ‘extinction conditions’ in diffuse distributions can and do

occur and what can be learnt about the nature of the real-

space ‘disorder’ in materials of this type from such symmetry

information. Example disordered materials will be used

throughout to illustrate the symmetry in real space that is

responsible for the ‘extinction conditions’ observed in reci-

procal space. We begin with a formal introduction to the

symmetry analysis of the possible extinction conditions that

can be expected for the characteristic DS associated with

disordered materials.

2. Extinction conditions in structured diffuse
distributions

Structured DS (at the H� q positions of reciprocal space),

whether of compositional and induced displacive or of pure

displacive origin, whether static or dynamic, contains impor-

tant information about the symmetry of the individual

compositional and/or displacive modes (associated with the

modulation wavevectors q) responsible. In general, the

analysis of this structured DS is hampered by the (often)

essentially continuous nature of the scattering (see e.g. Fig. 1):

there are usually a large number of wavevectors q distributed

throughout the first Brillouin zone of the average structure

which contribute to the observed structured diffuse-intensity

distribution. Whether intensity is observed at a particular

H� q position in reciprocal space, however, formally depends

on the symmetry/symmetries of the compositional and/or

displacive modulation waves associated with the individual

modulation wavevector q.

We have previously demonstrated the existence of

systematic extinction rules for experimental (displacive) DS

data, additional to the obvious ones coming from the trans-

verse or longitudinal character of the individual mode polar-

ization vectors (Perez-Mato et al., 1998; Aroyo et al., 2002).

The method for the derivation of these extinction conditions is

a straightforward extension of the procedure developed for

the calculation of phonon selection rules for inelastic neutron

scattering (Perez-Mato et al., 1998) and is now briefly outlined.

2.1. Extinction rules in DS

The displacement of the �th atom in the primitive unit cell t

away from its average structure position at ðr� þ tÞ owing to a

static displacive mode of symmetry j can be written in the form

u�;jðr� þ tÞ ¼
X

q

Qðq; jÞeð�jq; jÞ exp½2�iq � ðr� þ tÞ�; ð1Þ

where eð�jq; jÞ represents the complex displacement polar-

ization vector particularized for the �th atom associated with

the modulation wavevector q and mode symmetry j with the

property that eð�j � q; jÞ ¼ eð�jq; jÞ
�, and Qðq; jÞ is the

related amplitude. The sum is over all q vectors of the wave-

vector star q� (or over q� and ð�qÞ� if q and �q do not belong

to the same star).1

Likewise, a compositional modulation associated with a

mode of the same symmetry j describing the deviation of the

scattering factor of the �th atom in the primitive average

structure unit cell t away from its average value can be written

in the form

�f�;jðr� þ tÞ ¼
X

q

Aðq; jÞað�jq; jÞ exp½2�iq � ðr� þ tÞ�; ð2Þ

where the scalars að�j � q; jÞ ¼ að�jq; jÞ
� are the amplitudes

of the compositional modulations. The set fað�j � q; jÞg for all

� form a mathematical vector, also called the polarization

vector of the compositional modulation associated with the

modulation wavevector q and mode symmetry j. Aðq; jÞ is the

global amplitude of this modulation. Any arbitrary atomic
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Figure 1
(a) Close to ½001�, (b) h01�44i and (c) h110i zone-axis electron-diffraction patterns of the P42=mnm rutile type, ‘disordered’ transition metal oxyfluoride,
FeOF (see Brink et al., 2000, for details). Note that the diffuse streaking of H� �h110i� type runs through the hþ kþ l odd, but not the hþ kþ l even,
parent reflections in (a) and (b), but is missing altogether in (c).

1 For the term ‘wavevector star’ and other terms of representation theory of
space groups the reader is referred to Cracknell et al. (1979) and references
therein.



ordering arrangement and/or atomic displacement pattern can

then be described in terms of an appropriate summation (over

modulation wavevectors within or on the first Brillouin zone

of the underlying average structure and of all possible mode

symmetries j) of such compositional and displacive modula-

tion waves.

Whether such modes contribute to the observed diffuse

intensity at a particular Q ¼ H� q position in reciprocal

space then depends on the symmetry of the mode eigenvec-

tors. The compositional and displacive polarization vectors

að�jq; jÞ and eð�jq; jÞ associated with the mode wavevector q

and symmetry j transform according to irreducible repre-

sentations (irreps) Dq;j of the so-called little group Gq, which is

a subgroup of the space group G ¼ fðW ;wÞg. The elements of

the little group ðW q;wqÞ are determined by the conditions:

G
q
¼ fðW q;wqÞ 2 GjqW q ¼ qþH;H 2 L�g. The irreps of the

little group, also called small or little-group irreps are

discussed in many books on representation theory (here we

use the notation of Cracknell et al., 1979).

For a given modulation wavevector q, the set of all possible

scattering vectors Q ¼ H� q;H 2 L� forms an infinite set.

The action of the elements W q 2 G
q

(where G
q

is the point

group of Gq, known as the little co-group) on the Q vectors

results in the distribution of the Q set into orbits. The elements

W q satisfying the condition QW q ¼ Q form the so-called strict

point group G
Q

of the scattering vector Q. One can distinguish

general Q vector orbits characterized by a strict point group

consisting of the identity element only, G
Q
¼ I , and special Q

vector orbits with G
Q
> I . Grouping together the Q orbits with

the same set of strict point groups results in the partition of the

Q set into classes of Q vectors characterized by the same set of

selection rules.

The selection rules are derived from the transformation

properties of the structure factor (whether static or dynamic)

under the elements Wq ¼ ðW q;wqÞ of the little group Gq of the

wavevector q. The reformulation of the theorem on inelastic

scattering phonon activity (Perez-Mato et al., 1998) for the

case of DS is straightforward. The main result is: all phonon

modes of wavevector q and symmetry given by the little-group

irrep Dq;j are DS-inactive at a scattering vector

Q ¼ H� q;H 2 L� if:

X

Wq2G
Q

�q;j
ðW q;wq

Þ expð�iQ � wq
Þ ¼ 0 ð3Þ

where �q;jðW q;wqÞ is the character of the small irrep Dq;j, and

G
Q

is the strict point group of Q.

If for a given wavevector, the scattering Q vector is of a

general type, G
Q
¼ I , then all types of symmetry modes

associated with the wavevector q are allowed, i.e. there are

non-trivial symmetry restrictions on the DS phonon activity

only for special Q vectors. These basic results have been

developed in a step-wise procedure for the calculation of the

DS extinction rules for a modulation wavevector q, and a

scattering vector Q (cf. Kirov et al., 2003, for more details on

the procedure). Note that this procedure is valid whether the

mode is dynamic or static. An algorithm based on this

procedure serves as a basis for the computer program

NEUTRON (Kirov et al., 2003). Given the space group and the

wavevector, the program examines the scattering activity of

the corresponding modes for all possible types of scattering

vectors. NEUTRON forms part of the Bilbao Crystallographic

server (http://www.cryst.ehu.es) and can be used via the

Internet from any computer with a web browser; Aroyo et al.

(2006).

These extinction rules are of considerable help in the

identification of the symmetry of the q modes responsible for

the measured DS at a given Q vector. This identification

proves to be very useful, e.g. in understanding the phase-

transition behavior of K2SnCl6 (Aroyo et al., 2002). In that

case, it was possible to characterize symmetrically not only the

mode driving the phase transition, but also a low lying

dispersion branch whose symmetry is compatible with that of

the critical mode.

2.2. Non-characteristic orbits

The theoretically determined systematic extinction rules

discussed above depend only on mode symmetry and scat-

tering vector, and hence are independent of the symmetry of

specific atomic positions in the average crystal structure.

Experimentally, however, the local crystal chemistry under-

lying the observed DS in a significant number of ‘disordered’

materials (see e.g. Brink et al., 2000; Withers et al., 2004; Liu et

al., 2005; Withers, 2005) ensures that the observed, or

apparent, extinction rules (see e.g. Fig. 1) depend on the local

symmetry of the atoms or group of atoms primarily contri-

buting to the observed DS. Very often it is a specific orbit of

atoms or group of atoms (with higher symmetry than that of

the average structure) that are responsible for the observed

DS and its associated extinction rules. In the case of the

H� �h110i� diffuse scattering characteristic of FeOF shown in

Fig. 1, for example, the observed diffuse scattering is over-

whelmingly dominated by the displacive shifts of the Fe atoms

and not by the compositional ordering of the O and F atoms

(see e.g. Brink et al., 2000). Likewise, the sheets of diffuse

scattering observed perpendicular to the h110i directions in

the case of ThAsSe (see Fig. 2) and UAsSe (see Withers et al.,

2006) are due to local dimerization of As atoms along the

h110i real-space directions (Withers et al., 2004). In both these

cases, the symmetry of the Fe and As atoms responsible for the

observed structured DS is higher than of the average struc-

ture. In order to understand the observed extinction condi-

tions in such cases, it is thus necessary to extend the above

theory.

In general, the study of diffraction data that are clearly

dependent on specific groups of atoms should involve the so-

called inherent or eigensymmetry of the occupied atomic orbits

of the crystal structure, e.g. see Engel et al. (1984) and refer-

ences therein. If the inherent symmetry space group E of an

orbit of a space group G (known as the generating space group)

coincides with the group G, E ¼ G, the crystallographic orbit is

called characteristic. In many crystal structures, however, one

or several kinds of atoms form substructures with higher
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symmetry than the space group G of the crystal structure. In

these cases, the inherent symmetries of the occupied orbits are

described by space groups that are supergroups of the crystal-

structure space group, E>G, and the crystallographic orbits

are called non-characteristic. A simple example is that of

sphalerite ZnS with space-group symmetry G ¼ F �443m, while

both atoms occupy non-characteristic orbits with eigensym-

metry E ¼ Fm3m. Another well known example is that of the

fluorite CaF2 structure of space-group symmetry G ¼ Fm3m.

The Ca position 4a 000 is characteristic as its eigensymmetry

ECa ¼ G ¼ Fm3m. However, the F atoms, occupying the

position 8c 1
4 ;

1
4 ;

1
4, form a primitive cubic close-packed array

with a cell parameter one half that of fluorite, i.e. the F orbit is

non-characteristic as its eigensymmetry EF ¼ Pm3m is a

supergroup of G, Pm3mð12 aÞ>Fm3mðaÞ. Such non-character-

istic orbits whose eigensymmetry groups E are klassengleiche

supergroups of G, i.e. their eigensymmetry groups have addi-

tional translations with respect to G, are called extraordinary

crystallographic orbits.

The symmetry of the diffraction pattern of atoms occupying

non-characteristic orbits is determined not by the symmetry

group of the crystal G, but by the corresponding eigensym-

metry groups E>G as atoms occupying non-characteristic

orbits contribute to a diffraction pattern with symmetry E. For

example, atoms occupying extraordinary orbits do not

contribute to some classes of reflections. This is indicated

under the special reflection conditions tabulated in Interna-

tional Tables for Crystallography, Vol. A (2002), although the

data are incomplete: the cases of extraordinary orbits due to

special values of the variable parameters of the representa-

tives of the crystallographic orbits or due to metric speciali-

zation are not taken into account (for more details, e.g. see

Engel et al., 1984).

The underlying idea of our approach to the analysis of

structure-dependent DS data is that such an analysis should be

based on the above-discussed extinction conditions, but

calculated with respect to the eigensymmetry group of the

corresponding occupied orbits. The following statement by

Matsumoto & Wondratschek (1987) supports our reasoning: If

a physical interaction (magnetic, electric etc.) is restricted to a

G orbit of one kind of atoms or group of atoms, then the

symmetry of the corresponding effect will be determined by

the eigensymmetry of the orbit and not by G. This is illustrated

below in three separate cases. Both theoretical discussions and

tabulations of non-crystallographic orbits of the space groups

and their eigensymmetry groups can be found in the literature

(cf. Engel et al., 1984). Recently, we have developed an algo-

rithmic procedure for the determination of the non-char-

acteristic orbits of the space groups and their eigensymmetry

groups (Aroyo et al., 2009). The algorithm is implemented in

the computer program NONCHAR that is available on the

Bilbao Crystallographic Server (http://www.cryst.ehu.es).

The theoretically determined DS extinction conditions

combined with the concept of non-characteristic orbits can be

very useful in the interpretation of experimentally observed

structure-dependent systematic DS extinctions. The utility of

this approach for the case of extraordinary orbits is demon-

strated below by the analysis of DS data from ThAsSe, FeOF

and FeF2.

3. Examples

3.1. Diffuse scattering in ThAsSe

The room-temperature average structure of ThAsSe (see

Fig. 2a) is of ZrSiS type with space group P4=nmm (No. 129).

The As atoms occupy a fixed high-symmetry 2a position, while

the Th and Se atoms lie on a symmetry line with one free

parameter belonging to the Wyckoff position position 2c of

P4=nmm. Normally the valence state of the Th, As and Se

atoms is taken as +4, �3 and �2, respectively. From a charge-

balance point of view, there is thus one additional electron per

formula unit on the As atoms which delocalizes and, at room

temperature, makes ThAsSe a metal. On cooling, however, the
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Figure 2
(a) A close to ½100� projection of the P4=nmm (origin choice 2), ZrSiS-
type average structure of ThAsSe. The As atoms are represented by large
blue balls, Th atoms by small black balls and Se atoms by medium-sized
red balls. The covalent bonding between the As atoms is represented by
the grey rods. (b) A typical ½001� zone-axis EDP of ThAsSe taken at
100 K. In addition to the strong Bragg reflections of the underlying P4/
nmm average structure, note the presence of characteristic diffuse
streaking running along the H� � 0:14h1�110i� + �h110i�ð� � 1

7Þ positions
of reciprocal space around the nominally n-glide forbidden hk0, hþ k
odd reflections. (c) The resultant predicted one-dimensional AsAs
dimerization pattern responsible for the observed sheets of diffuse
intensity running perpendicular to the h110i directions of real space (for
details, see Withers et al., 2004).



resistivity increases dramatically, suggesting some sort of

localization of these itinerant electrons. Experimentally, on

cooling a characteristic, highly structured diffuse intensity

distribution becomes more and more apparent. This diffuse

distribution takes the form of two orthogonal

H� � 0:14h110i� � �h1�110i� � �½001�� (�; � essentially

continuous) planes of diffuse scattering (see e.g. Fig. 2b and

Withers et al., 2004). Note that the q vectors associated with

this diffuse distribution are thus of general type, and therefore

all symmetry types of q modes can be DS-active and could be

observed at any lattice vector H ¼ ðh; k; lÞ of the reciprocal

lattice of P4=nmm. Nonetheless, there is a clear systematic

extinction condition associated with this diffuse distribution,

i.e. the diffuse occurs only around the parent H ¼ ðh; k; lÞ with

hþ k ¼ 2nþ 1 (odd) Bragg reflections. This is an interesting

and important example in that despite the fact that the q

vectors are of general type there is nonetheless still a clear

systematic extinction condition. The reason is that the

displacements responsible for the observed diffuse distribu-

tion come only from displacements of the As atoms (see

Withers et al., 2004), which lie on a non-characteristic orbit.

Analysis of the eigensymmetry groups of the occupied

orbits of ThAsSe by the program NONCHAR indicates that

the As atoms (in Wyckoff position 2a) occupy a non-char-

acteristic orbit while the 2c orbits of Th and Se atoms are

characteristic. (The 2c orbits of P4=nmm become non-char-

acteristic for special values of a free parameter that do not

correspond to the specific values for Th and Se atoms in the

ThAsSe structure.) The eigensymmetry group of the As orbit

is the klassengleiche supergroup C4=mmm of the crystal space

group P4=nmm with no change in the lattice parameters, i.e.

the orbit 2a of P4=nmm is extraordinary.

The group–subgroup relation in direct space between the

crystal space group G ¼ P4=nmm and the klassengleiche

supergroup E ¼ C4=mmm, C4=mmmða, b, cÞ >P4=nmmða, b,

cÞ implies the inverse relationship between the corresponding

reciprocal space groups2
E
�<G�, i.e. ðC4=mmmÞ

� <
ðP4=mmmÞ

�. Note that the group–subgroup relation is again

of klassengleiche type, i.e. the group E� has half as many

translations as G�. In terms of wavevectors, this indicates that

certain wavevectors that were equivalent under G� (e.g.

related by a reciprocal lattice translation) become non-

equivalent under E�. In other words, the orbit of the wave-

vector q of G� splits into orbits with respect to E�. In the

special case of ThAsSe, the ðP4=mmmÞ
� orbit of the general

wavevector q splits in two ðC4=mmmÞ
� orbits of general

wavevectors with representatives: q1 ¼ q ¼ ðqx; qy; qzÞ and

q2 ¼ ðqx þ 1; qy; qzÞ.

The wavevectors q1 and q2, having no special symmetry with

respect to the eigensymmetry group of the As atoms, do not

exhibit any specific extinction conditions: all symmetry types

of q1 and q2 modes can be DS active and can be observed at

scattering vectors Q1 ¼ H� q1 and Q2 ¼ H� q2, where H is

any reciprocal lattice vector of ðC4=mmmÞ� (i.e. H ¼ ðh; k; lÞ;
with hþ k ¼ even). Depending whether the active modes

correspond to q1 or q2, the following apparent extinction

conditions appear:

(i) Modes of wavevector q1 ¼ ðqx; qy; qzÞ can be observed

at Q1 ¼ H� q1 ¼ ðh� qx; k� qy; l � qzÞ, and where hþ k ¼

even.

(ii) Modes of wavevector q2 ¼ ðqx þ 1; qy; qzÞ can be

observed at Q2 ¼ H� q2 ¼ ðh� qx � 1; k� qy; l � qzÞ, with

hþ k ¼ even.
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Figure 3
(a) A h110i plane of the rutile-type average structure of FeOF. The Fe-
centred Fe(O,F)6 octahedra are clearly apparent in projection. Note that
opposite vertices in each octahedra are shown as never being occupied by
the same anion, consistent with bond-valence sum considerations which
require this constraint in order that the centering Fe ion can then displace
away from the F atoms and towards the O atoms in each octahedra to
remedy the local over- and under-bonding of the O and F atoms (see
Brink et al., 2000, for details). (b) and (c) show the two ordered O/F
distributions and associated Fe displacement patterns possible within any
one h110i plane compatible with the above constraint.

2 The group G�, which is a semi-direct product of the point group PG of the
space group G and the translation group of the reciprocal lattice L� of G, is
called reciprocal space group of G. For more details see Aroyo &
Wondratschek (1995).



In the interpretation of the above results one should take

into account that the indexing of the experimental data in Fig.

2(b) is done with respect to the reciprocal basis of the crystal

space group P4=nmm. Also as ð1; 0; 0Þ is a reciprocal lattice

vector of ðP4=mmmÞ
�, then the modes of wavevector q2 will be

observed at Q2 ¼ ðh
0 � qx; k� qy; l � qzÞ with h0 þ k ¼ odd.

The symmetry conditions observed in the case of ThAsSe

are clearly related to modes of wavevector q2. In real space

they imply that neighboring As atoms along the modulated

h110i directions tend to displace out of phase. Note that the

observed H� � 0:14h110i� � �h1�110i� � �½001�� (�; � essen-

tially continuous) planes of diffuse scattering imply the exis-

tence of one-dimensional correlated chains of As atoms along

the modulated h110i directions of real space. The knowledge

that the wavevector is of type 2, of the two possibilities above,

associated with the observed diffuse scattering enables the

pattern of As displacements responsible for the observed

structured diffuse scattering to be derived, as shown in Fig.

2(c) (for details on how this can be achieved, see Brink et al.,

2000; Withers et al., 2004). The increase in this As–As dimer-

ization on lowering the temperature then explains the increase

in resistivity on lowering of temperature.

3.2. Oxygen/fluorine ordering in FeOF

In the case of the transition metal oxyfluoride FeOF, the

observed H� �h1�110i� diffuse scattering (see Fig. 1) requires

long-range ordering in f1�110g planes, but with no correlation

from one such plane to the next while the transverse polarized

nature of the observed structured diffuse scattering implies

that correlated displacements within these f1�110g planes must

be responsible. Fig. 3(a) shows one such f1�110g plane of the

P42=mnm rutile type, average structure. The Fe-centered

Fe(O,F)6 octahedra characteristic of the average structure

type are clearly apparent in projection. Bond-valence sum

calculations using the average crystal structure reported by

Vlasse et al. (1973) show clearly that oxygen and fluorine are

respectively under- and over-bonded in the FeOF average

structure and that therefore O and F atoms must occupy

opposite vertices in the local FeO3F3 octahedra (as shown in

Fig. 3a; see Brink et al., 2000 for details).

The centering Fe atom can then displace away from the F

atoms and towards the O atoms in each octahedra to remedy

the local over- and under-bonding of the O and F atoms. Note,

however, that there are two distinct possible patterns of O/F

ordering and induced Fe displacements possible, as shown in

Figs. 3(b) and (c). It will be shown below that a characteristic

diffuse extinction condition apparent in Fig. 1(c) can be used

to distinguish between these two possibilities. Note that O and

F neighbor each other in the periodic table and hence there is

very little contrast in electron-diffraction patterns associated

with O/F ordering. It is not therefore surprising that the

displacements of the Fe atoms induced by the O/F ordering

dominate the observed structured diffuse scattering.

The scattering vectors of the observed diffuse distribution

can be described as Q ¼ H� q, where the modulation

wavevectors q are of two types: q� ¼ ðqx;�qx; 0Þ and

qþ ¼ ðqx; qx; 0Þ. In the following we present an analysis of one

of these two types of wavevector, namely q ¼ q�. The results

for qþ are analogous due to the symmetry equivalence of q�
and qþ (q� and qþ belong to the same wavevector star).

The crystal-chemical considerations described above (see

also Brink et al., 2000) show that the induced Fe displacements

are primarily responsible for the observed DS shown in Fig. 1.

At this stage, it is important to realise that the Fe atoms

occupy an orbit that belongs to the special 2a Wyckoff position

of P42=mnm. This orbit is extraordinary as its eigensymmetry

group E ¼ I4=mmm is a klassengleiche supergroup of index 2

of P42=mnm with no change of the lattice parameters.

Similar to the case of ThAsSe, the reciprocal space group E�

is a klassengleiche subgroup of index 2 of G�, i.e. the transla-

tions of E� are just half of the translations of G�. As a conse-

quence, the orbit of the wavevector q of G� splits into two

orbits of wavevectors of E� with representatives ðqx;�qx; 0Þ

and ðqx;�qx; 1Þ. According to the notation of Cracknell et al.

(1979) ðqx;�qx; 0Þ corresponds to a special D line while

ðqx;�qx; 1Þ is a special Y line. The little co-groups GD and G
Y

coincide: they are of the crystal class mm2, with the following

symmetry operations f1 ¼ ðx; y; zÞ, 2x�xx0 ¼ ð�y;�x;�zÞ;mxy0

¼ ðx; y;�zÞ, mx�xxz ¼ ð�y;�x; zÞg. [For clarity, the point-group

symmetry operations are identified by their action on a point

ðx; y; zÞ.] There are four one-dimensional small irreps of the

little group GD (GY) and the corresponding characters for the

little co-group elements are listed in Table 1.

The DS selection rules calculated by NEUTRON for the

eigensymmetry group E ¼ I4=mmm and wavevectors along

the lines D ¼ ðqx;�qx; 0Þ and Y ¼ ðqx;�qx; 1Þ are displayed

in Tables 2 and 3. The infinite set of scattering vectors

Q ¼ H� q are distributed into several Q-vector types, and

the DS selection rules are the same for all scattering vectors
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Table 1
Little co-group irreps of the space group I4/mmm for wavevectors
belonging to the DðYÞ line.

The irrep matrices (which coincide with the characters, as all irreps are one-
dimensional) are listed for the elements of the little co-group GD

ðG
Y
Þ

Irreps 1 2x�xx0 mz mx�xxz

�1ðY1Þ 1 1 1 1
�2ðY2Þ 1 1 -1 -1
�3ðY3Þ 1 -1 1 -1
�4ðY4Þ 1 -1 -1 1

Table 2
Selection rules for D ¼ ðqx;�qx; 0Þ modes, space group I4/mmm.

The symmetry types (irreps) of modes which can be DS-active (allowed) are
listed for a representative Q = H� D = ðh� qx; kþ qx; lÞ of a Q orbit. The
groups G

Q
are given as oriented site-symmetry symbols. For the irrep labels,

see Table 1.

Q ¼ H� D G
Q

DS-active modes
Hðh; k; lÞ: hþ kþ l ¼ 2n

Qð�h� qx; hþ qx; 0Þ m:2m �1
Qðh� qx; kþ qx; 0Þ m:: �1;�3
Qð�h� qx; hþ qx; lÞ ::m �1;�4
Qðh� qx; kþ qx; lÞ 1 �1;�2;�3;�4



belonging to the same vector type. The strict point groups G
Q

,

characterizing the Q-vector types are specified by oriented

site-symmetry symbols. The components of the scattering

vectors Q are given with respect to the basis of E� but their

transformation to the basis of G� is trivial as the corresponding

transformation matrix is the identity.

Symmetry modes of any irrep type are DS active at scat-

tering vectors of the general type (last rows of Tables 2 and 3).

The form of the general Q vectors for the wavevectors D and

Y imply that only displacements of the modulation vector of

the type Y ¼ ðqx;�qx; 1Þ could be responsible for the

experimentally observed continuous rods of diffuse scattering

along ½110�� and ½1�110�� running only through the ðhþ kþ lÞ ¼

odd reflections of the parent rutile structure (see e.g. Fig. 1b).

Symmetry modes of wavevector Y are observed at scattering

vectors Qðh� qx; kþ qx; l � 1Þ with ðhþ kþ lÞ ¼ 2n, i.e. at

ðhþ kþ l � 1Þ ¼ 2n� 1 odd parent reflections. Note from

Table 3 that Y3 modes associated with the Y ¼ ðqx;�qx; 1Þ-

type modulation wavevector are DS-active when looking

down the ½001� orientation, as observed experimentally (see

Fig. 1a). By contrast, Y4 modes are DS-inactive at this

orientation. Likewise, Y3 modes are DS-inactive when

looking down a ½110� direction explaining the absence of

diffuse streaking along the ½1�110� direction, as also observed

experimentally (see Fig. 1c). Finally, Y3 modes are DS-active

in general provided ðhþ kþ lÞ ¼ odd (see Fig. 1b).

The presented symmetry analysis of the extinction rules in

DS experimental data of FeOF permits the identification of

the symmetry modes of the type Y3 as responsible for the

observed structured DS. This conclusion agrees with the

symmetry identification carried out in Brink et al. (2000) using

crystal-chemistry arguments.

3.3. The case of FeF2

As a final example, consider the

case of FeF2 (see Brink et al., 2001

for details). Similarly to FeOF, it

also crystallizes in the rutile

average structure type but with a

distinctly larger c axis. This mate-

rial also shows transverse polarized

H� �h1�110i� diffuse scattering [see

e.g. the (a) close to ½001� and (b)

½0�113� zone-axis electron-diffraction

patterns shown in Fig. 4] again

requiring long-range ordering in

f1�110g planes, but with no correla-

tion from one such plane to the

next. The transverse polarized

nature of the observed structured

diffuse scattering again implies

that correlated displacements

within these f1�110g planes must be

responsible. This time, however,

the H� �h1�110i� diffuse streaking

runs through the ðhþ kþ lÞ ¼

even rather than odd average

structure Bragg reflections. Clearly

the observed DS must again arise

from correlated Fe displacive shifts

within the relevant f1�110g plane

(see Fig. 4c), but this time the

relevant modulation wavevector

must be of the type D ¼

ðqx;�qx; 0Þ (as shown in Fig. 4c).

Likewise, the mode symmetry

research papers

Acta Cryst. (2010). B66, 315–322 R. L. Withers et al. � Extinction rules in diffuse scattering 321

Table 3
Selection rules for Y ¼ ðqx;�qx; 1Þ modes, space group I4=mmm.

The symmetry types (irreps) of modes which can be DS-active (allowed) are
listed for a representative Q = H� Y = ðh� qx; kþ qx; l � 1Þ of a Q orbit.
The groups G

Q
are given as oriented site-symmetry symbols. For the irrep

labels, see Table 1.

Q ¼ H� Y G
Q

DS-active modes
Hðh; k; lÞ: hþ kþ l ¼ 2n

Qðh� qx; kþ qx; 0Þ m:: Y1;Y3
Qð�h� qx; hþ qx; l � 1Þ ::m Y1;Y4
Qðh� qx; kþ qx; l � 1Þ 1 Y1;Y2;Y3;Y4

Figure 4
(a) Close to ½001� and (b) h0�113i zone-axis electron-diffraction patterns of FeF2. This time the H� �h110i�

diffuse streaking runs through the hþ kþ l even, but not the hþ kþ l odd, parent reflections of the
P42=mnm rutile type, average structure (see Brink et al., 2001, for details). (c) shows a h110i plane of the
rutile-type average structure of FeF2 and the pattern of Fe displacements within this plane responsible for
the observed H� �h110i� diffuse distribution.



associated with these modulated wavevectors must again be of

�3 mode symmetry type. The modes of symmetry �3 are DS-

active in general provided ðhþ kþ lÞ ¼ even as required (see

Figs. 4a and b). They are also observed at the ½001� zone-axis

orientation, again as required (see Fig. 4a).

4. Conclusions

Three different ‘disordered’ systems, ThAsSe, FeOF and FeF2,

have been used to illustrate the point that initially unexpected

extinction conditions with respect to the average structure

space-group symmetry (see e.g. Figs. 1, 2 and 4) can arise in

structured diffuse distributions if the atom, or group of atoms,

giving rise to the structured DS fall on sites with higher space-

group symmetry than the average structure space-group

symmetry. Knowledge of the relevant supergroup symmetry

enables the real space structural origin of the observed

‘extinction conditions’ to be understood as well as giving great

insight into the real space structural disorder responsible. In

addition to these unexpected ‘extinction conditions’, it has

also been demonstrated that additional extinction conditions

can arise at special zone-axis orientations as a result of the

symmetry of the modes responsible for the observed struc-

tured diffuse scattering.
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